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Abstract 

The problem of recovering the structure factors that 
contribute to a zone-axis convergent-beam diffraction 
pattern is discussed.. It is shown that an automated 
matching procedure that minimizes the sum-of- 
squares difference between experimental and simu- 
lated patterns is effective whether one is refining 
accurate structure factors in a known crystal or 
attempting ab initio structure determination. The 
details of the minimization method are analysed and 
it is shown that a quasi-Newton method that uses 
analytically derived gradients is particularly effective 
when several structure factors are varied. The inver- 
sion method for ab initio structure determination is 
tested on the [110] axis of GaP, using simulated 
patterns as ideal 'experimental '  data. 

I. Introduction 

There has been a growing realization over the past 
few years that the matching of experimental and 
computed patterns has the potential to expand greatly 
the scope of quantitative convergent-beam electron 
diffraction (CBED). The basic point is that intensity 
measurement is essential if we want to determine the 
Fourier components of the crystal potential, i.e. the 
crystal structure factors, and the measurement of 
structure factors is a vital step in the development of 
electron crystallography as a rival to the established 
X-ray and neutron diffraction techniques. Two factors 
have made this intensity matching possible: firstly, 
the introduction of instrumentation for the acquisi- 
tion of quantitative (and preferably energy-filtered) 
diffraction intensities (Zuo, Spence & Hoier, 1989; 
Mayer, Spence, Ernst & MSbus, 1991); secondly, the 
availability of the considerable computing power 
required to undertake a full dynamical analysis of 
the experimental data. The applications of intensity 
measurement considered to date include the fol- 
lowing. 

(i) The refinement of very accurate low-order 
structure factors in known crystal structures (Zuo, 
Spence & O'Keeffe, 1988; Zuo & Spence, 1991). Using 
these, it is possible to determine the valence charge 
distribution in the crystal and address questions such 
as the nature of the bonding, bond charge, ionicity 
etc. (see also Zuo, Spence & Petuskey, 1990). 
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(ii) The measurement of crystallographic phase 
invariants (i.e. combinations of structure-factor 
phases; Bird, James & Preston, 1987; Zuo, Spence & 
Hoier, 1989; Marthinsen, Hoier & Bakken, 1990) by 
detailed fitting of the intensity distribution around 
three- or four-beam diffraction situations. 

(iii) The measurement of medium- and high-order 
structure factors from higher-order Laue-zone rings 
(Vincent, Bird & Steeds, 1984; Tanaka & Tsuda, 1990, 
1991) or large-angle convergent-beam patterns (Taft0 
& Metzger, 1985; Vincent & Bird, 1986; Gjonnes, Boe 
& Gjonnes, 1990; Tomokiyo & Kuroiwa, 1990) to 
refine positional or occupational parameters, or to 
attempt a determination of unknown crystal struc- 
tures (e.g. Vincent & Exelby, 1990). 

More recently, there has been considerable interest 
in the possibility of the automatic matching of experi- 
mental and theoretical CBED patterns, by the 
minimization of some measure of the difference 
between the patterns. Marthinsen et al. (1990) 
attempted to minimize an R factor by a steepest- 
descents method, while Zuo & Spence (1991), Bird 
& Saunders (1991) and Tanaka & Tsuda (1991) all 
attempt to minimize the sum-of-squares difference 
using the simplex, quasi-Newton and Marquadt  
methods respectively. In this paper we give more 
details of the work described in Bird & Saunders 
(1991) and explain why we believe that zone-axis 
patterns offer more scope for structure-factor 
measurement than the systematic rows favoured by 
Zuo, Spence and co-workers. We also discuss why 
the quasi-Newton method with analytic gradients 
(Gill, Murray & Wright, 1981; Fletcher, 1987) offers 
the best prospect of efficient structure-factor determi- 
nation, particularly when many structure factors are 
varied simultaneously. The problem we tackle is the 
inversion of a CBED pattern to recover the scattering 
potential. While the forward-direction problem, that 
of computing a pattern from a known structure, is 
now relatively straightforward, the inversion of 
dynamical (i.e. multiple) scattering intensities 
remains extremely difficult. As we shall show, it 
becomes soluble basically because there is a discrete 
set of potential Fourier components in a crystal and 
only a relatively small subset of these makes a large 
contribution to a typical CBED pattern. There are 
two related aspects to the inversion problem: 
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(i) the refinement of  accurate structure factors for 
a known crystal structure; 

(ii) the recovery of sufficient structure factors in 
an unknown material to determine the crystal struc- 
ture (i.e. ab initio structure determinat ion) .  

Al though these problems may appear  at first sight 
to be unrelated,  the same automatic  pat tern-matching 
techniques  can be appl ied  to both. The only real 
difference is the starting point;  in (i) we have a very 
good idea of what the structure factors are [both 
elastic (Doyle & Turner,  1968) and absorptive (Bird 
& King, 1990) parts], while in (ii) we can assume no 
a priori knowledge. The work to date has addressed 
the first problem (Zuo & Spence, 1991; Tanaka  & 
Tsuda 1991); here we address the second. In many 
ways this is more difficult, but in a sense it is also 
more fundamenta l  - can we, with no prior informa- 
tion, solve a crystal structure purely by inversion of 
a C B E D  pattern? The work presented here is essen- 
tially a feasibil i ty study to see if this problem might 
in pr inciple  be soluble. To that end we make no 
at tempt to analyse real exper imental  data, we work 
with unrealist ical ly small  patterns and we ignore com- 
plicating factors such as absorpt ion and high-order  
Laue-zone (HOLZ)  effects. 

A significant feature of the present work is that we 
analyse the zero-layer diffraction of a zone-axis 
CBED pattern. In their work on accurate structure- 
factor refinement,  Zuo & Spence (1991) used system- 
atic rows~ while Tanaka  & Tsada  (1991) analyse 
HOLZ diffraction in a zone-axis pattern to obtain 
accurate posit ional parameters  in a known structure. 
Al though it is not yet clear how the techniques com- 
pare, we feel that zone-axis diffraction has three 
advantages over systematic rows for both ab initio 
structure determinat ion and accurate structure-factor 
refinement.  Firstly, more structure factors contribute 
to a zone-axis pattern, so a larger set can be obtained 
from a single pattern. For example,  the [100] and 
[110] axes in a face-centred cubic crystal include all 
structure factors out to (531). In principle,  therefore, 
from just  two experimental  patterns we can determine 
a set of  structure factors that is certainly large enough 
to include all the low-order factors required for analy- 
sis of  bonding,  and which goes a long way towards 
an ab initio structure determinat ion.  Secondly, there 
is considerably  more informat ion  in a zone-axis pat- 
tern than in systematic diffraction. The CBED discs 
in a systematic row consist of  fringes and the intensity 
informat ion is essentially restricted to the peak 
intensit ies of this one-d imens iona l  fringe pattern. This 
is to be contrasted with the fully two-dimensional  
character  of  the intensity distr ibution in the discs of  
a zone-axis pattern. The informat ion content is a vital 
ingredient  in the inversion procedure - it is important  
to have a highly over-determined problem (i.e. many  
more items of data than the number  of parameters  
we hope to extract) if  the sum-of-squares minimiz-  

ation is to work efficiently and to give accurate struc- 
ture factors. The reduced information content of  
systematic rows is likely to become increasingly 
significant as unit cells become larger, because the 
CBED discs become smaller  and the number  of frin- 
ges is reduced. The only way to counteract this would 
be to increase the crystal thickness, but this would 
lead to an undesi rable  increase in the background.  
Thirdly, zone-axis diffraction is more dynamical  than 
systematic diffraction in the sense that more multiple- 
scattering paths are open in a zone-axis situation, and 
zone-axis extinction lengths tend to be shorter than 
in one-dimensional  diffraction. This has the advan- 
tage that there should be a greater sensitivity to the 
ampli tudes  and phases of the structure factors, again 
leading to a more accurate inversion. 

The outline of the paper  is as follows. In § 2 we 
define the sum-of-squares function that we aim to 
minimize  and show how to calculate its gradients with 
respect to the structure factors that are al lowed to 
vary. In § 3 the feasibil i ty of  carrying out ab initio 
structure determinat ion is discussed, with reference 
to the [110] axis of GaP. § 4 is the discussion. 

2. S u m - o f - s q u a r e s  min imizat ion  

Zuo & Spence (1991) define the sum-of-squares 
difference between theoretical,  l~h, and experimental ,  
I~ ,  intensities as 

X 2= ~ )_..] [ f (G ,  K,)/0.2(G, K,)] 
G i 

× [ I e x ( G , K , ) - c I ,  n(G,K~)] 2, ( l a )  

where the G sum is over the diffracted discs in the 
zone-axis CBED pattern and the i sum is over the 
orientations (described by transverse wavevector K~) 
within each disc. Each experimental  intensity 
measurement  has an associated weighting factor, 
f ( G ,  K,), and variance, o'2(G, Ki), which is usually 
taken to be Iex(G, K,). We experience no problems 
with 0 .2 going to zero in our current calculations,  
since computed intensities do not go to zero. When 
using true experimental  data, obtained for example  
using a 12 bit C C D  camera  (Mayer  et al., 1991), the 
intensity would be an integer in the range 0 to 4096 
and it would be necessary to ensure that any zero 
intensities were set to 1 to prevent (1 a) blowing up. 
Finally,  c is a normalizat ion coefficient. In addi t ion 
to ( l a ) ,  we have also used the function 

X 2= Y'. ~ . f (G,  K,){[ lex(G, K,)] '/2 
G i 

- c[ lth(G, K,)]1/2}. ( 1 b ) 

The relat ionship between ( l a )  and (1 b) can be seen 
if  ( l a )  is written in the form (with 0.2= I~x) 

X2= ~] ~] f ( G ,  K,){[ l~x(G, K,)] '/-~- c[ Ith(G, K,)] 1/2 
G i 

×[  lth(G, K,)/ lex(G, K,)]'/2} 2. ( l c )  
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It is clear that, provided the experimental and theo- 
retical intensities are closely matched, the difference 
between ( l a )  and ( lb)  is small. For reasons that will 
be explained later, we have found it more convenient 
to work with (1 b) when considering ab initio structure 
determination. The theoretical intensities lth are 
calculated from amplitudes Ao(Ki), which are 
expressed in terms of the Bloch-wave coefficients (j)- 
Co (Ki) of the many-beam equations, i.e. 

lth(G, K,) = IAG(K,)I 2 (2a) 

AG(K,) = Y. C~o/)*(K,) CG(i)(K,) 
J 
× exp [-isti)(Ki)t/2k], (2b) 

where 

E {[(K, +G) 2 -  s(J)(K,)]~c,n + UG_H}C~)(Ki) =0. 
H 

(3) 

In (2b), t is the crystal thickness and k the fast- 
electron wavevector, and in (3) the structure factors 
Uo are defined by 

u(a )=(2ymo/h2 )V(R)=~  UGexp( iG-R) ,  (4) 
G 

where V(R) is the projected crystal potential at the 
given zone axis. As discussed above, we ignore HOLZ 
effects, so all the vectors which appear in (2)-(4) are 
strictly two-dimensional. The notation used is the 
same as in Bird (1989), where further details of the 
background theory may be found. We also neglect 
absorption, which ensures that V(R) in (4) is real. 

It is clear from (2) and (3) that the only inputs to 
the theoretical intensities are the set of structure fac- 
tors { Uo}, the crystal thickness, the accelerating volt- 
age and the crystal lattice parameters [which are 
needed for calculation of (K+ G)2]. The accelerating 
voltage and lattice parameters can be measured 
independently by standard CBED techniques and so, 
in general, only the structure factors and thickness 
need be treated as unknown parameters. In the pres- 
ent work, where we use simulated patterns as ideal 
'experimental '  data, the thickness is fixed at the 
known value. With real data, this cannot be done, 
but the inclusion of thickness as a fitting variable is 
straightforward, as discussed below. Also, in (1) we 
put f =  1 for all G and K and, because the intensity 
scale of the 'experimental '  data is known, we set c -- 1. 
Again, the extension to real data is straightforward. 

Many methods exist for the minimization of sum- 
of-squares functions like X 2 (e.g. Fletcher, 1987). The 
basic idea is to use g 2 as a measure of the difference 
between experimental and simulated patterns and to 
minimize X 2 by varying the inputs to the lth calcula- 
tion. As discussed above, these consist of a set of 
structure factors together with the crystal thickness. 
The set of parameters that minimize X 2 then represents 
the best estimate of these variables. Zuo & Spence 

(1991) show how the error in these values can also 
be estimated. The best minimization method depends 
on the problem to be solved, but Fletcher (1987) 
recommends using the quasi-Newton method, and 
this method is implemented in the NAG library (Gill, 
Murray & Wright, 1981). Zuo & Spence (1991) recom- 
mend using the simplex method because they 
experienced unreliability with their quasi-Newton 
program, but we have found no such difficulties with 
the NAG routine. Although robust, the simplex 
method is relatively slow and the minimization time 
scales exponentially with the number of parameters 
that are varied. In contrast, the quasi-Newton method 
has an approximately linear scaling. The scaling is a 
significant factor because it is important to vary as 
many structure factors as possible to obtain the best 
fit, with the 20 or more parameters we may want to 
vary in a zone-axis calculation (see below), the 
simplex method becomes impractically slow. 

The quasi-Newton method requires the gradients 
o f  l t h  with respect to the parameters that are varied. 
These can be found using finite differences, but 
analytic gradients are far superior if they are available 
and they do not take an excessive amount of time to 
compute. In our case, we need to calculate 

OAG(Ki)/OUH and OAG(Ki)/Ot (5) 

for all Ac(Ki) that are included in the pattern and 
for all UH that are treated as fitting parameters. Hav- 
ing obtained these gradients of the diffracted ampli- 
tudes, those of the intensities follow immediately. The 
gradient with respect to t is found trivially by 
differentiation of (2b), so the problem reduces to 
finding OAG/OU.. To do this, we use first-order 
perturbation theory, as described by Bird (1990) in 
the context of absorptive potentials (see also Zuo, 
1991). The change in amplitude ~SAG caused by any 
small additional potential 8U(R) which has the same 
periodicity as the basic potential in (4) is given by 

gAG = Y~ (i~Ujj't/2k)C(o j)*r-'(j')'--G 
• . ,  

j,.I 

x exp {-i[s(-/) + s(i')]t/4k} 

xsin  {[s(J)-s(f)]t/4k}/{[s(J)-s(/)]t/4k} (6) 

with 

8U~,,= E (1/At)  ~ dR C~;') * 
G,G '  cell 

xexp  ( - i G ' -  R )SU(R)C~  ) exp ( i G .  R). (7) 

In (7), the integral is over a projected unit cell, whose 
area is Ac (Bird, 1989). In the present case, we are 
interested in the change in amplitude when a structure 
factor UH is changed to UH+t~UH. tSU(R) then 
becomes 8UH exp ( i l l  • R), giving 

. C ( j ' ) :~ p ( j )  ~5~r(H) = aUH E G+H,~--- G . ( 8 )  
G 
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Although this analytic evaluation of the integral in 
(7) may appear to be useful, it is in fact better to 
work directly with (7) rather than use (8). The reason 
lies in the number of operations, and therefore the 
computing time, required to evaluate 6Uj/(H) for all 
j, j '  and H. If we have an N-beam calculation and 
we are varying M structure factors [i.e. there are M 
Hs in (8)], the computing time of (8) scales as N3M. 
With finite differences, the same gradients can be 
calculated in a similar time because each diagonaliz- 
ation scales as N 3 and M of these are required as 
each structure factor is varied. Tests show that the 
overheads associated with the computation of 
analytic gradients using (6) and (8) means that they 
take a little longer than the equivalent finite-difference 
method. Although this might be acceptable, given the 
greater accuracy and reliability of analytic gradients, 
it would clearly be advantageous to improve the 
efficiency of the gradient calculation. This can be 
achieved by using fast Fourier transforms to evaluate 
(7). The sums over G and G' represent Fourier trans- 
forms of the Bloch-wave coefficients, to give the Bloch 
waves in real space. These transforms can be com- 
puted and stored for each Bloch state j ;  this takes of 
order N 2 log N operations (i.e. N log N for each of 
N states). The R integral in (7) is then just a further 
Fourier transform of the product of two real-space 
Bloch states, which gives 6Uj/(H) for all H. For each 
of the N2 j and j '  combinations, this transform 
requires of order N log N operations, making this 
part of the computation scale as N31og N. The 
gradient calculation dominates in terms of computer 
time, leading to the whole calculation scaling roughly 
as N 3 log N. Despite the redundancy of calculating 
6Uj/ for all H rather than the M that are required, 
tests show that the Fourier transform method is sig- 
nificantly faster than using finite differences when a 
large number of gradients is required. 

Once the gradients have been calculated, the 
minimization procedure is straightforward. Given 
starting values for the set of structure factors that we 
choose to vary, the NAG routine EO4GBF is used 
to minimize X 2. It is important to note that the same 
procedure can be used whether we are attempting ab 
initio structure determination or accurate structure- 
factor refinement. The only difference is in the initial 
values of U~; that are used in the many-beam 
equations (3). When refining a known crystal, it is 
reasonable to use structure factors derived, in the 
usual way, from tabulated atomic scattering factors 
(Doyle & Turner, 1968). If absorption is included, 
the equivalent form factors are given by Bird & King 
(1990). Those structure factors that are not varied are 
then fixed at these initial values, while a chosen set 
are allowed to vary to minimize X 2. However, in the 
case of ab initio structure determination we can 
assume no prior knowledge of the structure factors 
and those that are not included in the minimization 

of X 2 are set to zero. A problem arises in that we also 
do not know how to choose starting values for the 
structure factors that do vary. This is heightened by 
the fact that (as will be discussed in the next section) 
X 2 has several local minima in the multi-dimensional 
structure-factor space; with any set of starting values 
it is impossible to know whether one will find the 
global minimum or one of the local minima. This is 
a well known problem in optimization theory (e.g. 
Fletcher, 1987) and there is no general solution. In 
the work discussed in the next section we generate a 
number of random starting points and assume that 
the overall minimum from all these runs is the true 
global minimum. Our present method is extremely 
crude and a number of alternative schemes are avail- 
able, e.g. simulated annealing, restarting from local 
minima etc. (Fletcher, 1987). Nevertheless, we have 
found our method to be satisfactory for these pre- 
liminary calculations. 

3. Application to GaP [I 10] 

To investigate the feasibility of ab initio inversion of 
a CBED pattern we use as our example the [110] axis 
of GaP. Figs. l (a )  and (b) show CBED patterns 
calculated using structure factors derived from Doyle 
& Turner (1968) scattering factors. In both patterns 
the thickness is 250/~ and the accelerating voltage is 
300 kV. Fig. l (a )  is calculated with 43 beams in the 
many-beam equations and Fig. l (b)  is the result of 
a 19-beam calculation. The indexing of Fig. l (b)  is 
shown in Fig. l(c). Neither pattern includes absorp- 
tion or HOLZ effects. The 43-beam pattern is essen- 
tially converged with respect to the number of beams 
in the calculation. It can be seen that there are some 
differences between the 43- and 19-beam calculations, 
but the basic structure is similar. We have chosen to 
work with the smaller pattern to reduce the computing 
time required in the minimization procedure. 

GaP [110] has been chosen for this study because, 
even though the crystal structure is simple, it rep- 
resents a rather difficult test case. GaP is non- 
centrosymmetric and the [110] axis has a non-centric 
projection. The projected potential is shown in Fig. 
l (d )  and displays the familiar dumb-bell structure, 
with the heavier Ga strings forming a stronger poten- 
tial than lighter P-atom strings. Because GaP is non- 
centrosymmetric, the structure factors that make up 
the projected potential and enter the many-beam 
equations have non-trivial phases as well as ampli- 
tudes. To reconstruct the potential, it will be necessary 
to obtain these phases; in effect, solving the infamous 
'phase problem' of X-ray crystallography. The task 
we are faced with is clear from Figs. l (b)  and (d). 
The forward-direction calculation, from Fig. 1 (d) to 
Fig. l (b) ,  is straightforward if the structure factors 
are known. However, the inverse problem is much 
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(a) 

(b) 

)o~ 

(c) 

(d) 

Fig. 1. GaP [110] CBED pattern calculated using (a) 43 beams 
and (b) 19 beams in the many-beam equations. Thickness is 
250/~ and accelerating voltage is 300 kV. (c) Indexing of (b). 
(d) Projected potential for GaP [110]. 

more difficult; can we, with no other information, go 
backwards from the CBED pattern to the projected 
potential? In other words, can we extract from Fig. 
l (b)  a sufficient number of structure factors (both 
amplitudes and phases) with sufficient accuracy to 
reconstruct the potential of Fig. 1 (d) ? 

The full list of structure factors that enter the many- 
beam equations in a 19-beam calculation is (111), 
(002), (220), (1i3), (222), (004), (331), (224), (333), 
(1i5), (4~,0), (006), (4~,2), (335), (2ff.6), (4~,4), (1i7) 
and (008), together with their - G  and mirror-related 
equivalents. In principle, each has an amplitude and 
phase, but in practice we can fix the origin to make 
some of them real. The [110] axis has a mirror plane 
lying through the (002) discs and we put the origin 
on the associated mirror in real space (i.e. through 
the axis of the dumb-bells in Fig. l d). This choice 
forces U(2~o ) and U(4~,o ) to  be real, although their 
amplitudes can still be of either sign. There remains 
one free parameter that determines the origin in the 
[001] direction; we fix this by forcing the (111) struc- 
ture factor also to be real. This choice of origin is 
consistent with the projected potential shown in Fig. 
l (d) .  The 19-beam pattern is therefore constructed 
from 33 structure-factor parameters; 15 structure fac- 
tors have amplitude and phase, while 3 have ampli- 
tude only. When working with real experimental data, 
the crystal thickness will of course be another free 
parameter, but here we keep it fixed at its known 
value of 250/~. The reason for using this small thick- 
ness arises from the problem with local minima in 
X z. Tests show that the number of local minima rises 
with thickness, so that finding the global minimum 
(with some degree of certainty) at 500 A takes roughly 
twice as many minimization runs as at 250 ~ .  A lower 
limit to the thickness is forced by the requirement 
that there should be sufficient information in the 
CBED pattern to extract the required structure fac- 
tors. Very thin crystals give featureless CBED discs, 
and if there were only one intensity measurement 
available from each disc it is clearly impossible to 
determine 33 structure-factor parameters. The thick- 
ness must therefore be sufficiently large to produce 
structure (i.e. intensity variation) in the CBED discs, 
as observed in Fig. l (b) .  For GaP [110] we have 
found 250/~ to be an ideal compromise between 
having sufficient information for the inversion and 
avoiding too many problems with local minima. In 
our calculations the CBED discs are sampled with 
13 orientations that are taken uniformly over the area 
of each disc. Only intensities that are not mirror- 
related are included in the calculation of X 2, leading 
to a total of 136 independent bits of intensity informa- 
tion. It can be seen that the problem is highly over- 
determined, with 136 items of data being available 
to fit a maximum of 33 parameters. In practice (see 
below) we attempt to fit at most 18 parameters, which 
improves the statistics still further. 
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As discussed above, the minimization of X 2 pro- 
ceeds by choosing a set of structure factors to vary 
and giving these random starting values within a 
reasonable range (0 to 3 A -2 for amplitudes and 0 to 
27r for phases). All other Ucs in the many-beam 
equations are set to zero. Calculations have been 
carried out allowing 4, 5, 6, 7, 8 and 10 structure 
factors to vary; these involve variation with respect 
to 6, 8, 10, 12, 14 and 18 parameters respectively. 150 
minimization runs are performed in each case to build 
up a picture of the minima that occur in the multi- 
dimensional space of X 2. The global minimum then 
becomes apparent; it usually has a considerably lower 
g 2 than the local minima and it is found in a larger 
proportion of the runs. The largest calculation there- 
fore involves performing 150 minimizations in an 
18-dimensional space. This takes of order 30 h CPU 
on a 2Mflop SUN workstation. 

The results are presented in Table 1, which shows 
the values of the structure-factor amplitudes (a) and 
phases (~0) that minimize g 2. Also shown are the ideal 
results (i.e. those used to generate Fig. lb)  and the 
final values of g 2 (SSQ). In producing these results 
we use the form of g 2 given in ( lb)  rather than the 
form ( l a )  used by Zuo & Spence (1991). The reason 
lies in the number of times the global minimum is 
found in each calculation. Using ( lb)  and varying 
four structure factors, the global minimum is found 
in seven of the 150 runs. With 5, 6, 7, 8 and 10 structure 
factors this becomes 9, 5, 3, 3 and 1 respectively. The 
overall decrease reflects the increase in the number 
of local minima as the number of fitting parameters 
is increased. This is due to the decreasing sensitivity 
of the CBED pattern to the higher-order structure 
factors. For example, the structure factors are added 
in the last three calculations [namely (331), (224), 
(1i5) and (333)] do not have associated discs in the 
pattern and we cannot expect the same degree of 
sensitivity to these as we find with the lower-order 
Uc. It is therefore not surprising that the number of 
local minima increases with the number of fitting 
parameters and that it hence becomes more difficult 
to find the best fit. Interestingly, we find that when 
using the g 2 of (1 a) this problem with local minima 
is considerably magnified. When 4, 5, 6 and 7 structure 
factors are varied, the global minimum is found in 
only 5, 1, 1 and 0, respectively, of the 150 runs. We 
know that the global minimum is not found in the 
seven-structure-factor fit because, if we take the result 
given in Table 1, obtained using ( lb) ,  and minimize 
the g 2 of ( l a )  using this as a starting point, we find 
a lower final value of g 2 than in any of the random- 
start runs. As ( lc)  shows, once the match between 
Iex and I t h  is good, giving a low final value of g 2, the 
results using (1 a) and (1 b) must be similar. At present 
we have no explanation for the different behaviour 
of the ( l a )  and ( lb)  functions. With the use of the 
improved minimization schemes discussed above, it 

Table 1. Structure-factor amplitudes, a, and phases, ~o, 
derived f rom the minimization o f  x 2 

P a r a m -  I d e a l  N u m b e r  o f  s t r u c t u r e  f ac to r s  
e t e r  r e su l t s  4 5 6 7 

a t h  2.6322 3.0365 2.8277 2.8463 2.6766 
aoo2 0.5101 0.7766 0.6388 0.3719 0.4368 
~Ooo2 1.8476 1.5317 6.1361 2.4890 1.2337 
a2~0 -2.2645 -3.0897 -3.3738 -2.7793 -2.4881 
ali3 1.3659 1.6877 1.5327 1.5616 1.7286 
~o~i3 3.8047 4.1204 3.7223 3.9153 3.9835 
a212 0.4675 1.3154 0.4842 0.6510 
~o2~2 1.8472 1.6334 1.5838 1.3570 
aoo4 1.4762 - 1.7465 1.4685 
~0oo4 0.5252 - 0.8493 0.9415 
a3gl 0.9759 - 1.4826 
~03~ l 6.1182 - - 0.0009 
a2~ 4 1.1213 - - 
~o2~.4 0.5529 - - 
al~5 0.7514 - - 
~0~i5 3.5123 . . . .  
a3] 3 0.7696 - _ _ 
~333 3.8859 - _ _ 

SSQ 0.3879 0.2750 0.1629 0.0855 

8 10 

2.6115 2.6178 
0.6639 0.5639 
1.9182 1.9450 

-2.1763 -2.2164 
1.5771 1.4563 
3.9293 3.8655 
0.5023 0.4426 
2.1589 1.8814 
1.4503 1.5167 
0.5779 0.4725 
1.1929 1.2117 
0.0321 6.2067 
1.8117 1.2992 
0.6308 0.7098 

- 0.7393 
3.2525 
0.6606 
3.9043 

0.0215 0.0042 

is expected that the problem of local minima 
experienced with ( l a )  and ( lb)  will be considerably 
reduced. 

The projected potentials constructed from the 'best 
fit' values of Table 1 are shown in Fig. 2. It should 
be emphasized that the results of Table 1 and Fig. 2 
are obtained with essentially no prior knowledge of 
the crystal structure. Table 1 indicates that the largest 
errors tend to be found in the last added structure 
factor; in effect this least-significant structure factor 
'soaks up'  the errors in the lower-order UG. It can 
be seen that an excellent representation of the 

(a)  (b)  (c) 

( d )  ( e )  ( f )  

Fig .  2. P r o j e c t e d  p o t e n t i a l s  d e r i v e d  f r o m  the  be s t  fits to  t he  C B E D  
p a t t e r n  o f  Fig .  l ( b ) .  ( a )  I n c l u d i n g  ( l i l ) ,  (002) ,  (220) a n d  ( 1 i 3 )  
s t r u c t u r e  f ac to r s .  ( b )  A d d i n g  (222).  (c )  A d d i n g  (440) .  ( d )  A d d i n g  
(331) .  ( e )  A d d i n g  (224).  ( f )  A d d i n g  ( 1 i 5 )  a n d  (333).  
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projected potential is obtained with six structure fac- 
tors (Fig. 2c) and that with ten structure factors the 
projected potential is almost perfect [compare Figs. 
l (d)  and 2(f)] .  

4. Discussion 

Although we have been working with a much sim- 
plified example, our results indicate that the ab initio 
inversion of a CBED pattern appears to be feasible. 
However, a number of problems will arise when we 
attempt to apply the techniques described here to real 
experimental data. It is first necessary to consider the 
effects of HOLZ reflections and absorption. Neither 
of these present real difficulties. It is straightforward 
to include HOLZ reflections in the many-beam 
equations (e.g. Bird, 1989) and the calculation of 
gradients is not significantly changed. When including 
the effects of absorption we have to be careful with 
the non-Hermitian character of the many-beam 
matrix, but gradients can still be calculated, using 
both the left- and right-hand sets ofeigenvectors (Bird 
& Saunders, 1992). More fitting parameters will also 
arise because each structure factor has an elastic and 
absorptive part, and these must be varied separately 
(Zuo & Spence, 1991). The inclusion of the thickness 
and the normalization constant as fitting parameters 
is again straightforward, because their gradients are 
simple to calculate. The main problem with making 
the theoretical model more realistic is that the size of 
the calculation increases dramatically, with respect 
to both the number of beams in the many-beam 
equations and the number of fitting parameters that 
are used in the minimization of g 2. We are currently 
investigating two methods that might allow the com- 
puting time required by the minimization to be 
reduced. Firstly, better minimization strategies such 
as simulated annealing or "kicking out' from local 
minima should make it easier to find the global 
minimum using considerably fewer than the 150 runs 
used here. Secondly,* when initializing the minimiz- 
ation run, we could use atomicity criteria (as used in 
X-ray direct methods) to generate physically reason- 
able combinations of starting structure factors rather 
than the totally random start points presently used. 
With current advances in computer power, we believe 
that full-size calculations will be possible in the near 
future. 

Although our analysis has concentrated on the ab 
initio inversion problem, the methods described here 
can be applied equally well to the refinement of 
low-order structure factors in a known crystal. In fact, 
the minimization of X 2 is easier in this case because 
the starting point is well defined and the problem of 
local minima is reduced, if not eliminated completely. 

* We are grateful to one of the referees for suggesting this. 

The advantages of zone-axis diffraction over system- 
atic diffraction discussed in § 1 also apply equally 
well to structure-factor refinement and it is expected 
that many-parameter zone-axis refinement, per- 
formed using quasi-Newton minimization, will 
significantly extend existing refinement techniques 
(Zuo & Spence, 1991). 

Finally, the analysis in this paper has used simu- 
lated patterns instead of real experimental data. Any 
real data will have noise, as well as an unavoidable 
thermal diffuse background that is not removed by 
energy filtering. Tests are currently under way to 
assess the influence of noise and background and the 
first indications are that the addition of random noise 
to our 'experimental' intensities has little effect on 
the final results. This is to be expected, given that (as 
discussed above) the problem is highly over-deter- 
mined. The more crucial test, of using real experi- 
mental data, will be done as soon as digitally collected 
energy-filtered zone-axis patterns become available. 

This work is supported by the Science and 
Engineering Research Council. 
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Abstract 

Electron diffraction intensity data were collected at 
1200kV from thin epitaxially oriented crystals of 
copper perbromophthalocyanine (C32Br16CuNx) in a 
projection down molecular columns. Measured cell 
constants for the projection with cram symmetry are 
d~oo = 17.88 (9), b =26.46 (15) A. The structure was 
determined by Fourier refinement after three heavy- 
atom positions were identified in an initial potential 
map. In addition to the copper and halogens, all 
light-atom positions were found. Although the final 
R value for all data is 0.41, n-beam dynamical calcu- 
lations for crystal thicknesses corresponding to the 
estimated sample dimension account for the observed 
amplitudes that deviate most from their kinematical 
values. 

Introduction 

Is electron crystallography possible? That is to say, 
can electron diffraction intensity data from thin 
microcrystals be exploited for quantitative ab initio 
structure analyses in much the same way as X-ray 
crystal-structure determinations are carried out? 
Since the early work of Rigamonti (1936), there have 
been numerous attempts to answer this question, 
including the comprehensive program on organic 
compounds begun by Vainshtein and his co-workers 
in Moscow (Vainshtein, 1964). 

Although the first use of direct phasing techniques 
to solve a structure with electron diffraction intensities 
was reported 15 years ago (Dorset & Hauptman, 
1976), only recently has successful application of this 
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technique to a number of representative organic struc- 
tures shown (Dorset, 1991) that the above questions 
can be answered affirmatively if the compounds 
investigated are composed of light atoms such as 
carbon, nitrogen and oxygen. These analyses show 
that, after initial determination of atomic positions, 
the structures can be refined by Fourier techniques 
(and possibly also constrained least-squares tech- 
niques) to produce a reasonable packing scheme in 
which the constituent molecules are found to have 
chemically meaningful bond distances and angles. If 
microcrystals are the only preparations available (as 
in linear polymers), electron crystallographic tech- 
niques can be used to obtain reasonably accurate 
molecular architectures. 

Because of dynamical scattering, the presence of 
heavy atoms in an organic structure may, on the other 
hand, make a structure analysis difficult or impos- 
sible. This was anticipated by the direct phasing 
analysis of simulated electron diffraction data from 
the disodium salt of an organic sulfinate (Dorset, Jap, 
Ho & Glaeser, 1979). Analysis of a 60kV data set 
from thiourea (Dvoryankin & Vainshtein, 1960) has 
shown that the phase estimates obtained from the 
computed triplet and quartet structure invariants are 
correct, but the dynamical-scattering contribution 
from the sulfur atom can affect the accuracy of bond 
distances and angles calculated from the atomic posi- 
tions found in the potential maps (Dorset, 1991). Use 
of shorter electron wavelengths may be helpful, as 
demonstrated in the structure determination of cop- 
per perchlorophthalocyanine with high-voltage elec- 
tron diffraction intensity data. By low-dose electron 
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